Ca2+ influx through stretch-activated cation channels activates maxi K+ channels in porcine endocardial endothelium.

نویسندگان

  • J Hoyer
  • A Distler
  • W Haase
  • H Gögelein
چکیده

The endocardial endothelium is an important modulator of myocardial function. The present study demonstrates the existence of a stretch-activated Ca(2+)-permeable cation channel and of a Ca(2+)-activated K+ channel in the endocardial endothelium of the porcine right atrium. The stretch-activated channel is permeable for K+, Na+, Ca2+, and Ba2+, with mean conductances of approximately 32 pS for the monovalent cations and approximately 13 pS for divalent cations. The Ca(2+)-activated K+ channel has a mean conductance of 192 pS in symmetrical KCl. solution. Channel activity is strongly dependent on membrane potential and the cytosolic Ca2+ concentration. Half-maximal activation occurs at a cytosolic Ca2+ concentration of approximately 5 microM. The influx of Ca2+ through the stretch-activated channel is sufficient to activate the Ca(2+)-activated K+ channel in cell-attached patches. Upon activation of the stretch-activated channel, the cytosolic Ca2+ concentration increases, at least locally, to values of approximately 0.5 microM, as deduced from the open probability of the Ca(2+)-dependent K+ channel that was activated simultaneously. The stretch-activated channels are capable of inducing an intracellular Ca2+ signal and may have a role as mechanosensors in the atrial endothelium, possibly activated by atrial overload.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maxi K+ channel mediates regulatory volume decrease response in a human bronchial epithelial cell line.

The cell regulatory volume decrease (RVD) response triggered by hypotonic solutions is mainly achieved by the coordinated activity of Cl- and K+ channels. We now describe the molecular nature of the K(+) channels involved in the RVD response of the human bronchial epithelial (HBE) cell line 16HBE14o-. These cells, under isotonic conditions, present a K+ current consistent with the activity of m...

متن کامل

Up-regulation of pressure-activated Ca(2+)-permeable cation channel in intact vascular endothelium of hypertensive rats.

In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal ...

متن کامل

Membrane-delimited Inhibition of Maxi-K Channel Activity by the Intermediate Conductance Ca2+-activated K Channel

The complexity of mammalian physiology requires a diverse array of ion channel proteins. This diversity extends even to a single family of channels. For example, the family of Ca2+-activated K channels contains three structural subfamilies characterized by small, intermediate, and large single channel conductances. Many cells and tissues, including neurons, vascular smooth muscle, endothelial c...

متن کامل

Identification and characterization of stretch-activated ion channels in pollen protoplasts.

Pollen tube growth requires a Ca2+ gradient, with elevated levels of cytosolic Ca2+ at the growing tip. This gradient's magnitude oscillates with growth oscillation but is always maintained. Ca2+ influx into the growing tip is necessary, and its magnitude also oscillates with growth. It has been widely assumed that stretch-activated Ca2+ channels underlie this influx, but such channels have nev...

متن کامل

Cholinergic inhibition of short (outer) hair cells of the chick's cochlea.

Cochlear hair cells are thought to be inhibited by the release of ACh from efferent neurons. Several studies have implicated Ca2+ as a postsynaptic intermediary in hair cell inhibition, but its role remains unproven. We have made whole-cell, tight-seal recordings from single short hair cells (the avian analog of outer hair cells in the mammalian cochlea), isolated from the chick's cochlea, to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 91 6  شماره 

صفحات  -

تاریخ انتشار 1994